Abstract

Mini Review

Could metabolic risk factors contribute to the development of cervical cancer?

Maydelín Frontela-Noda*, Eduardo Cabrera-Rode, Maite Hernández-Menéndez and Raquel Duran-Bornot

Published: 18 December, 2019 | Volume 3 - Issue 1 | Pages: 001-006

The role of human papillomavirus infection as etiological factor for cervical squamous intraepithelial lesions and cervical cancer is well established. However, the presence of this virus is not sufficient condition for developing of cervical cancer. Currently, the contribution of other viral, environmental and host cofactors in triggering of this neoplasm is being investigated. Some metabolic risk factors have been associated with the development of several gynecological cancers such as endometrium, ovary and cervix. However, the mechanisms through which these factors contribute to carcinogenesis are complex and not fully elucidated. Few interventions regarding host metabolic factors have been performed on women at risk of developing cervical cancer. Some specific treatments and or changes in lifestyles could be carried out to avoid or delay progression to this kind of cancer. This paper aims to enlarge and update this topic based on the article ¨Association between components of the metabolic syndrome and degree of cervical squamous intraepithelial lesions in Cuban women¨, with emphasis on possible mechanisms that explain the link between central adiposity, insulin resistance and dyslipidemia with risk of premalignant lesions and cervical cancer. 

Read Full Article HTML DOI: 10.29328/journal.acem.1001011 Cite this Article Read Full Article PDF

Keywords:

Cervical squamous intraepithelial lesions (SIL); Cervical cancer (CxCa); Metabolic risk factors; Central adiposity; Insulin resistance; Dyslipidemia

References

  1. Onwujekwe O, Samy A. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncol. 2018; 4: 1553-1568. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31560378
  2. Ministerio de Salud Pública. Dirección Nacional de Registros médicos y estadísticas de salud. Anuario estadístico de salud. La Habana: MINSAP. 2019. 69-101.
  3. Cabezas E, Camacho T, Santana A, Borrajero I, Aguilar F, et al. Programa Diagnóstico Precoz del Cáncer de Cuello del Útero en Cuba. Cuban Ministry of Public Health. 1999.
  4. Human papillomavirus vaccines: WHO position paper, October 2014. Wkly Epidemiol Rec. 2014; 89: 465-492. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25346960
  5. Prigge ES, von Knebel Doeberitz M, Reuschenbach M. Clinical relevance and implications of HPV-induced neoplasia in different anatomical locations. Mutat Res Rev Mutat Res. 2017; 772: 51-66. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28528690
  6. Bruni L, Barrionuevo-Rosas L, Albero G, Serrano B, Mena M, et al. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. 2019.
  7. Wright TC, Stoler MH, Behrens CM, Sharma A, Zhang G, et al. Primary cervical cancer screening with human papillomavirus: End of study results from the ATHENA study using HPV as the first-line screening test. Gynecol Oncol. 2015; 136: 189-197. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25579108
  8. Soto Y, Torres G, Kourí V, Limia CM, Goicolea A, et al. Molecular Epidemiology of Human Papillomavirus Infections in Cervical Samples From Cuban Women Older Than 30 Years. J Low Genit Tract Dis. 2014; 18: 210-217. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24270200
  9. Soto Brito Y, Limia León CM, Kourí Cardellá V, Goicolea Maiza A, Capó de Paz V, et al. Papilomavirus humanos y otros factores asociados al desarrollo de lesiones cervicouterinas en mujeres cubanas. Panorama Cuba y Salud. 2016; 11: 24-33.
  10. Luhn P, Walker J, Schiffman M, Zuna RE, Dunn ST, et al. The role of co-factors in the progression from human papillomavirus infection to cervical cancer. Gynecol Oncol. 2013; 128: 265-270. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23146688
  11. Zhao D, Hou Z, Liu Y, Sun Q. Morbidity of metabolic syndrome ingynecologic cancers patients. Int J Clin Exp Med. 2016; 9: 336-340.
  12. Frontela-Noda M, Delgado DC, Cabrera-Rode E, Hernández-Menéndez M, Duran-Bornot R, et al. Association between components of the metabolic syndrome and degree of cervical squamous intraepithelial lesions in Cuban women. Diabetes Metab Syndr. 2019; 13: 1443-1448. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31336504
  13. Gundu HR Rao. Global Epidemic of Obesity and Diabetes: World Diabetes Day-2018. Diabetes Obes Int J. 2018; 3: 000189.
  14. Ethical issues in the care of the obese woman. Committee Opinion No. 600. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2014; 123: 1388-1393. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24848919
  15. Griffiths C, Jimenez E, Chalas E. Causal effect of obesity on gynecologic malignancies. Curr Probl Cancer. 2018; 43: 145-150. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30497850
  16. Chhabra S, Gangane N. Coexistence of Endometrial Cancer, Polycystic Ovarian Syndrome and Metabolic Syndrome. EC Endocrinology and Metabolic Research. 2019; 91-97.
  17. StocksT, Bjørge T, Ulmer H, Manjer J, Häggström C, et al. Metabolic risk score and cancer risk: pooled analysis of seven cohorts. Int J Epidemiol. 2015; 44: 1353-1363. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25652574
  18. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, et al. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018; 48: e12997. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29995306
  19. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer. 2018; 4: 374-384. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29709261
  20. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. J Clin Oncol. 2016; 34: 4270-4276. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27903155
  21. Poirier P. The many paradoxes of our modern world: Is there really an obesity paradox or is it only a matter of adiposity assessment? Ann Intern Med. 2015; 163: 880-881. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26551376
  22. Denis GV, Obin MS. Metabolically healthy obesity: Origins and implications. Mol Aspects Med. 2013; 34: 59-70. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23068072
  23. Bonet-Gorbea M, Varona-Pérez P. III Encuesta Nacional de factores deriesgo y actividades preventivas de enfermedades no transmisibles. 2015.
  24. Lindheim SR, Welsh S, Jiang N, Hawkins A, Kellar L, et al. Trends in Management of Overweight and Obesity in Obstetrics & Gynecology,Family Medicine and Pediatrics 2011-2015. J Obes Eat Disord. 2017; 3: 1.
  25. US Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd edition. Washington, DC: US Department of Health and Human Services; 2018.
  26. Londoño-Lemos ME. Pharmacological Advances to the Treatment of Obesity. J Child Obes. 2018; 3: 3.
  27. Schauer DP, Feigelson HS, Koebnick C, Caan B, Weinmann S, et al. Bariatric Surgery and the Risk of Cancer in a Large Multisite Cohort. Ann Surg. 2019; 269: 95-101. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28938270
  28. Schutz DD, Busetto L, Dicker D, Farpour-Lambert N, Pryke R, et al. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obes Facts. 2019; 12: 40-66. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30673677
  29. Sun W, Lu J, Wu S, Bi Y, Mu Y, et al. Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women. Am J Cancer Res. 2016; 6: 2334-2344. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27822422
  30. Gallagher EJ, LeRoith D. Epidemiology and molecular mechanisms tying obesity, diabetes and the metabolic syndrome with cancer. Diabetes Care. 2013; 36: 233-239. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23882051
  31. Singh PJ, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol. 2014; 31: 1-14. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24338270
  32. Sandford, BL, Chandler DS. The role of the insulin receptor isoforms in the Insulin-like growth factor signaling axis in cancer. Clin Oncol. 2017; 2: 1-4.
  33. Pickard A, Durzynska J, McCance DJ, Barton ER. The IGF axis in HPV associated cancers. Mutat Res Rev Mutat Res. 2017; 772: 67-77. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28528691
  34. Lee SW, Lee SY, Lee SR, Ju W, Kim SC. Plasma levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in women with cervical neoplasia. J Gynecol Oncol. 2010; 21: 174-180. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20922140
  35. Serrano ML, Romero A, Cendales R, Sanchez-Gomez M, Bravo MM. Serum levels of insulin-like growth factor-I and -II and insulin-like growth factor binding protein 3 in women with squamous intraepithelial lesions and cervical cancer. Biomedica. 2006; 26: 258-268. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16925098
  36. Landt S, Wehling M, Heidecke H, Jeschke S, Korlach S, et al. Prognostic significance of angiogenic factors in uterine cervical cancer. Anticancer Res. 2011; 31: 2589-2595. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21778309
  37. Mathur SP, Mathur RS, Creasman WT, Underwood PB, Kohler M. Early non-invasive diagnosis of cervical cancer: beyond Pap smears and human papilloma virus (HPV) testing. Cancer Biomark. 2005; 1: 183-191. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17192039
  38. Mannhardt B, Weinzimer SA, Wagner M, Fiedler M, Cohen P, et al. Human papillomavirus type 16 E7 oncoprotein binds and inactivates growth-inhibitory insulin-like growth factor binding protein 3. Mol Cell Biol. 2000; 20: 6483-6495. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10938125
  39. Pickard AS, McDade SS, McFarland SM, McCluggage WG, Wheeler CM, et al. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLOS Pathogens. 2015; 11: e1004988. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26107517
  40. Vidal AC, Henry NM, Murphy SK, Oneko O, Nye M, et al. PEG1/MEST and IGF2 DNA methylation in CIN and in cervical cancer. Clin Transl Oncol. 2014; 16: 266-272. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23775149
  41. Soto D, Song C, McLaughlin-Drubin ME. Epigenetic Alterations in Human Papilloma virus: Associated Cancers. Viruses. 2017; 9: 1-18. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28862667
  42. Leick MB, Shoff CJ, Wang EC, Congress JL, Gallicano GI. Loss of imprinting of IGF2 and the epigenetic progenitor model of cancer. Am J Stem Cell. 2012; 1: 59-74. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23671798
  43. Taheri M, Ghafouri-Fard S. Long Non-Coding RNA Signature in Cervical Cancer. Klin Onkol. 2018; 31: 403-408. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30319271
  44. Baylin SB; Jones PA. A decade of exploring the cancer epigenome-Biological and translational implications. Nat Rev Cancer. 2011; 11: 726-734. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21941284
  45. Van der Veeken J, Oliveira S, Schiffelers RM, Storm G, Van Bergen En Henegouwen PM, et al. Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr Cancer Drug Targets. 2009; 9: 748-760. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19754359
  46. Tseng CH. Metformin use and cervical cancer risk in female patients with type 2 diabetes. Oncotarget. 2016; 7: 59548-59555. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27486978
  47. Usman H, Munir R, Ameer F, Hasnain S. Cancer associated dyslipidemia. Adv in Dyslipidemia. 2016; 2: 32.
  48. Melvin JC, Holmberg L, Rohrmann S, Loda M, Van Hemelrijck M. Serum lipid profiles and cancer risk in the context of obesity: four meta-analyses. J Cancer Epidemiol. 2013; 2013: 823849. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23401687
  49. Chandler PD, Song Y, Lin J, Zhang S, Sesso HD, et al. Lipid biomarkers and long-term risk of cancer in the Women’s Health Study. Am J Clin Nutr. 2016; 103: 1397-1407. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27099252
  50. Katzke VA, Sookthai D, Johnson T, Kühn T, Kaaks R. Blood lipids and lipoproteins in relation to incidence and mortality risks for CVD and cancer in the prospective EPIC–Heidelberg cohort. BMC Medicine. 2017; 15: 218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29254484
  51. Ulmer H, Bjorge T, Concin H, Lukanovae A, Manjerf J, et al. Metabolic risk factors and cervical cancer in the metabolic syndrome and cancer project (Me-Can). Gynecol Oncol. 2012; 125: 330-335. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22330614
  52. Ahn HK, Shin JW, Ahn HY, CY Park, NW Lee, et al. Metabolic components and recurrence in early -stage cervical cancer. Tumor Biol. 2015; 36: 2201. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25398694
  53. Matsuda M, Shimomura I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis and cancer. Obes Res Clin Pract. 2013; 1-12. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24455761
  54. Lewis GF. Determinants of plasma HDL concentrations and reverse cholesterol transport. Curr Opin Cardiol. 2006, 21: 345-352. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16755204
  55. Lofterød T, Mortensen ES, Nalwoga H, Wilsgaard T, Frydenberg H, et al. Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancerrecurrence and survival by breast cancer subtypes. BMC Cancer. 2018; 18: 654. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29902993
  56. Balaban S, Lee LS, Schreuder M, Hoy AJ. Obesity and cancer progression: Is there a role of fatty acid metabolism? BioMed Res Int. 2015; 2015: 1-17. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25866768
  57. Carter JC, Church FC. Mature breast adipocytes promote breast cancer cell motility. Experim and Mol Pathol. 2012; 92: 312-317. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22445926
  58. Agarwal AK, Garg A. Enzymatic activity of the human 1-acylglycerol-3-phosphate-????-acyltransferase isoform 11: upregulated in breast and cervical cancers. J of Lip Res. 2010; 51: 2143-2152. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20363836
  59. Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and cancer. Front Pharmacol. 2015; 6: 265. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26617517
  60. Soran H, Hama S, Yadav R, Durrington PN. HDL functionality. Curr OpinLipidol. 2012; 23: 353-366. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22732521
  61. Von Eckardstein A, Hersberger M, Rohrer L. Current understanding of themetabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care. 2005; 8:147-152. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15716792
  62. Annema W, von Eckardstein, A. Dysfunctional high-density lipoproteins in coronary heart disease: Implications for diagnostics and therapy. Transl Res. 2016; 173: 30-57. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26972566
  63. Moriyama K, Negami M, Takahashi E. HDL2-cholesterol/HDL3-cholesterol ratio was associated with insulin resistance, high-molecular-weight adiponectin, and components for metabolic syndrome in Japanese. Diabetes Res Clin Pract. 2014; 106: 360-365. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25201260
  64. Pérez-Méndez Ó, Pacheco HG, Martínez-Sánchez C, Franco M. HDL-cholesterol in coronary artery disease risk: Function or structure? Clin Chim Acta. 2014; 429: 111-122. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24333390
  65. McGrowder D, Riley C, Morrison EY, Gordon L. The role of high-density lipoproteins in reducing the risk of vascular diseases, neurogenerative disorders and cancer. Cholesterol. 2010; 2011, 496925. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21490772
  66. Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseño L, Carreón-Torres E, Izquierdo-Vega JA, et al. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules. 2018; 23: 2730. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30360466

Similar Articles

  • Could metabolic risk factors contribute to the development of cervical cancer?
    Maydelín Frontela-Noda*, Eduardo Cabrera-Rode, Maite Hernández-Menéndez and Raquel Duran-Bornot Maydelín Frontela-Noda*,Eduardo Cabrera-Rode,Maite Hernández-Menéndez,Raquel Duran-Bornot. Could metabolic risk factors contribute to the development of cervical cancer?. . 2019 doi: 10.29328/journal.acem.1001011; 3: 001-006
  • Evaluation of endothelial function in obese children and adolescents
    Hacer Efnan Melek, Ayça Törel Ergür* and Gökçe Kaan Ataç Hacer Efnan Melek,Ayça Törel Ergür*,Gökçe Kaan Ataç. Evaluation of endothelial function in obese children and adolescents. . 2021 doi: 10.29328/journal.acem.1001019; 5: 014-023
  • Metabolic syndrome: A case report
    Dragan Klaric, Marta Martinis* and Marta Klaric Dragan Klaric,Marta Martinis*,Marta Klaric. Metabolic syndrome: A case report. . 2021 doi: 10.29328/journal.acem.1001022; 5: 031-035

Recently Viewed

Read More

Most Viewed

Read More

Help ?