Abstract

Case Presentation

COVID-19 associated hyperthyroidism due to destructive thyrotoxicosis in a young female patient

Zeilberger MS*, Hasmann SE*, Auer MK and Schmidmaier R

Published: 27 July, 2020 | Volume 4 - Issue 1 | Pages: 023-025

SARS-CoV2 can induce multiple immunological and endocrinological changes. We report the case of a COVID-19 associated hyperthyroidism in a young female.

Per definition the patient – because of having given birth six weeks previously - had a postpartum thyroiditis. However thus no antibodies were detected, the thyroiditis ceased without medication after the dissolving of the virus disease and the fT3/fT3-ratio proved a destructive thyreopathy as well as there was a close time link onset of the symptoms with the novel corona virus infection we argue it to be a COVID-19 induced thyrotoxicosis.

This proves the ability of SARS-CoV-2 to alter thyroid function, therefore all COVID-19 patients should be monitored regarding endocrinological changes and TSH, fT3, fT4 should be assessed.

Read Full Article HTML DOI: 10.29328/journal.acem.1001016 Cite this Article Read Full Article PDF

References

  1. Brancatella A, Ricci D, Viola N, Sgro D, Santini F, et al. Subacute Thyroiditis After Sars-COV-2 Infection. J Clin Endocrinol Metab. 2020; 105: 65–77. PubMed: https://pubmed.ncbi.nlm.nih.gov/32436948/
  2. Nguyen CT, Mestman JH. Postpartum Thyroiditis. Clini Obstet Gynecol. 2019; 62: 359–364. PubMed: https://pubmed.ncbi.nlm.nih.gov/30844908/
  3. Lazarus JH, Hall R, Parkes AB, Richard CJ, McCulloch B, et al. The Clinical Spectrum of Postpartum Thyroid Disease. QJM. 1996; 89: 429–435. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8758046
  4. Izumi Y, Hidaka Y, Tada H, Takano T, Kashiwai T, et al. Simple and Practical Parameters for Differentiation between Destruction-Induced Thyrotoxicosis and Graves’ Thyrotoxicosis. Clini Endocrinol. 2020; 57: 51–58. PubMed: https://pubmed.ncbi.nlm.nih.gov/12100069/
  5. Marrif H. Thyroiditis, Secondary to Viral Infection. Front Endocrinol.2010; 10. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355905/
  6. Desailloud R, Hober D. Viruses and Thyroiditis: An Update. Virol J. 2009.
  7. Cunha BA, Berbari N. Subacute Thyroiditis (de Quervain’s) Due to Influenza A: Presenting as Fever of Unknown Origin (FUO). Heart and Lung. 2013; 42: 77–78. PubMed: https://pubmed.ncbi.nlm.nih.gov/22819125/
  8. Altay FA, Güz G, Altay M. Subacute Thyroiditis Following Seasonal Influenza Vaccination. Hum Vaccin Immunother. 2016; 12: 1033-1034. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962945/
  9. Michas G, Alevetsovitis G, Andrikou I, Tsimiklis S, Vryonis E. De Quervain Thyroiditis in the Course of H1N1 Influenza Infection. Hippokratia. 2014; 18: 86-87. PubMed: https://pubmed.ncbi.nlm.nih.gov/25125962/
  10. Al Almundher A, Al Yaarubi S, Al Futaisi A. An Infant with Cytomegalovirus-Induced Subacute Thyroiditis. J Pediatr Endocrinol Metab. 2008; 21: 191–193. PubMed: https://pubmed.ncbi.nlm.nih.gov/18422033/
  11. Baharoon SA. H1N1 Infection-Induced Thyroid Storm. Ann Thorac Med. 2010; 5: 110–112. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883193/
  12. Li X, Ma X. Acute Respiratory Failure in COVID-19: Is It ‘Typical’ ARDS? Crit Care. 2020; 24: 198. PubMed: https://pubmed.ncbi.nlm.nih.gov/32375845/
  13. Irabien-Ortiz Á, Carreras-Mora J, Sionis A, Pàmies J, Montiel J, et al. Fulminant Myocarditis Due to COVID-19. Rev Esp Cardiol (Engl Ed). 2020; 73: 503–504. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158782/
  14. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and Treatment Options. Clini Immunol. 2020; 215: 108448. PubMed: https://pubmed.ncbi.nlm.nih.gov/32353634/
  15. Zou X, Chen K, Zou J, Han P, Hao J, et al. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-NCoV Infection. Front Med. 2020; 14: 185-192. PubMed: https://pubmed.ncbi.nlm.nih.gov/32170560/
  16. Meng-Yuan L, Li L, Zhang Y, Xiao-Sheng W. Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues.” Infectious Diseases of Poverty. 2020; 9: 45. PubMed: https://pubmed.ncbi.nlm.nih.gov/32345362/
  17. Ding Y, He L, Zhang Q, Huang Z, Che X, et al. Organ Distribution of Severe Acute Respiratory Syndrome (SARS) Associated Coronavirus (SARS-CoV) in SARS Patients: Implications for Pathogenesis Virus Transmission Pathways. J Pathol. 2004; 203: 622–630. PubMed: https://pubmed.ncbi.nlm.nih.gov/15141376/
  18. Boelaert K, WE Visser, Taylor PN, Moran C, Léger J, et al. ENDOCRINOLOGY in the TIME of COVID-19: Management of Hyperthyroidism and Hypothyroidism. Eur J Endocrinol. 2020.
  19. Bartalena L, Chiovato L, Marcocci C, Vitti P, Piantanida E, et al. Management of Graves’ Hyperthyroidism and Orbitopathy in Time of COVID-19 Pandemic. J Endocrinol Invest. 2020; 43: 1149–1151. PubMed: https://pubmed.ncbi.nlm.nih.gov/32441005
  20. Griffith ML, Bischoff LA, Baum HBA. Approach to the Patient With Thyrotoxicosis Using Telemedicine. J Clin Endocrinol Metab. 2020; 105 dgaa373. PubMed: https://pubmed.ncbi.nlm.nih.gov/32525973/
  21. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a Patient with COVID-19: A Cause of Raised Troponin and ECG Changes. Lancet. 2020; 395: 1516. PubMed: https://pubmed.ncbi.nlm.nih.gov/32334650/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?